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Abstract. The motion of a conducting electron in a quantum dot, with one or several dislocations
in the underlying crystal lattice, is considered in the continuum picture, where dislocations are
represented by torsion of space. The possible effects of torsion are investigated on the levels of
classical motion, on non-relativistic quantum motion, and on spin–torsion coupling terms derivable
in the non-relativistic limit of generalizations of the Dirac equation in a space with torsion. Finally,
phenomenological spin–torsion couplings analogous to Pauli terms are considered in the non-
relativistic equations. Different prescriptions of classical and non-relativistic quantum motion in a
space with torsion are shown to give effects that should, in principle, be observable. Semiclassical
arguments are presented to show that torsion is not relevant for the classical motion of the centre
of a wavepacket. The correct semiclassical limit can instead be described as classical trajectories
in a Hamiltonian given by the band energy. In the special case of a spherically symmetric band
this motion reduces to straight lines, independently of local crystal orientations. By dimensional
analysis the coupling constants of the possible spin–torsion interactions are postulated to be
proportional to a combination of the effective mass of the electron,meff , the lattice constant,
a, andh̄. The level splitting is then very small with transition frequencies of the order of 1 kHz, or
smaller.

1. Introduction

Quantum dots are small essentially two-dimensional conducting domains, connected to
external leads by tunnel barriers such that the number of conducting electrons is quantized.
The elastic mean free path and the dephasing length may, under appropriate circumstances, be
much larger than the lateral size of the dots. The motion of an electron inside may therefore to
a first approximation be considered as ballistic. These structures may hence in many respects
be regarded as physical realizations of the quantum mechanics textbook examples of motion
in two-dimensional potential wells. For recent reviews and papers, see [1–8].

The purpose of this paper is to explore a suggestion made in a book and in a series of papers
by Kleinert and co-workers [9–11], which I will state compactly as follows: (a) the motion of
a quantum particle in a space with torsion has several distinct features compared to free motion
in flat space; (b) a crystal with defects may in the continuum picture be described as a space
with torsion; (c) the motion of an electron around a defect may thus in some circumstances be
modelled by the motion of a quantum particle in a space with torsion.

A continuum description of a crystal is valid at distances much larger than the lattice
spacing. The low-lying electronic states in a quantum dot extend across the dot, with typical
spatial scaleL, while a localized defect extends over a few lattice spacingsa. The scale
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separationL/a is thus in the range of 100–10 000, and it is conceivable that an effective
continuum description might be appropriate.

The outline of this paper is as follows. In section 2 I review theliterature on motion in
spaces with torsion. The Dirac equation coupled to torsion allows for one vector and one
axial vector coupling, both of which give rise to Zeeman-like couplings of spin to an axial
vector in the non-relativistic limit. We also consider more phenomenologically motivated
spin–torsion couplings, which yield similar terms. In section 3 I reviewelementary aspects of
the differential geometry of physics of defects and in section 4 I discuss, on the semiclassical
level, the effects of crystal torsion on electron motion. In section 5 I try to evaluate possible
torsion-induced effects in quantum dots. In section 6 I summarize the results. They are
negative as concerns the proposal by Kleinert that autoparallels should play a privileged role.
On the semiclassical level it is possible to observe motion along geodesics, but such motion
is insensitive to torsion. Motion along autoparallels and a related non-relativistic quantum
mechanics could also probably be disproved by experiments. The spin–torsion coupling terms
are not theoretically unsound, but lead to such very weak effects that they would be difficult
to observe.

2. Classical and quantum motion in a space with torsion

In this section I use the Einstein conventions of summing over repeated indices and raising
and lowering indices by the metric tensorgij and its inversegij . For conventions pertaining
to the affine connection, torsion and contorsion I follow Hehlet al [12], see also Schrödinger
[13] and Schouten [14].

A manifold is said to carry metric and affine structure if one can compute the length of
vectors in the tangent space by

|A|2 = gijAiAj (1)

and parallel transport of a vector along an infinitessimal distance dEx by

Ai → Ai − 0kj iAj dxk. (2)

The metric and the affine connection0 are connected by the compatibility condition, that the
scalar product of two arbitrary vectors is invariant under parallel transport:

gij,k − glj0ki l − gil0kj l = 0 (3)

which may also regarded as the statement thatg is covariantly constant. The first term in (3)
stands for the partial derivative∂gij /∂xk.

The standard form of the solution of (3) is

gil0kj
l = gil

{
l

kj

}
−Kkji

{
l

kj

}
= 1

2g
lm(gmj,k + gmk,j − gkj,m) (4)

where we recognize the Cristoffel symbol
{
l

kj

}
, symmetric under the interchange ofj andk.

The second term in (4),Kkji , is known as contorsion and must be antisymmetric under the
interchange of the last two indices ofj andi.

Let us consider a small area spanned by two vectors dx(1) and dx(2). If we transport dx(2)
along dx(1) it will change into (in component form) dxi(2) − 0kj i dxj(2) dxk(1). If we move first
along dx(1) and then along dx(2) we will hence end up with a displacement (in component
form)

dP i12 = dxi(1) + dxi(2) − 0kj idxj(2) dxk(1). (5)



Torsion and electron motion in quantum dots 573

If we were, on the other hand, to make the displacements in the opposite order we would end
up at

dP i21 = dxi(2) + dxi(1) − 0kj idxj(1) dxk(2). (6)

The difference between these displacements is a vector, which measures by how much the
circuit fails to close if direction vectors are parallel transported around the perimeter of the
area spanned by dx(1) and dx(2)

dBi = dP i12− dP i21 = 0kj i
(
dxj(1) dxk(2) − dxj(2) dxk(1)

)
. (7)

The parentheses in (7) is the area element dA12
jk spanned by dx(1) and dx(2). The part of0

antisymmetric in interchange ofj andk is called torsion, and has hence the following relation
to dB (in component form follows):

dBi = −Skj i dA12
kj Skj

i = 0[kj ]
i . (8)

Torsion is therefore a third-order tensor, and it may be connected to contorsion by

Kijk = −Sijk + Sjki − Skij (9)

from which it is seen that the required antisymmetricity ofK (in the last two indices) follows
from the antisymmetricity ofS (in the first two indices). As a final consistency check one may
antisymmetrize0 using the decomposition of (4):

0[kj ]
i =

{
i

[kj ]

}
−K[kj ]

i = 0− 1
2

(
Kkj

i −Kjki
)

= 1
2

(
Skj

i − Sjki
) = Skj i . (10)

The symmetric part of0kj i under interchange ofk and j thus contains both the Cristoffel
symbol and a symmetrized combination of the antisymmetric part; this explains the distinction
between contorsion and torsion.

The geodesics on a manifold are given by

d2xi

dτ 2
+

{
i

jk

}
dxj

dτ

dxk

dτ
= 0 (geodesics). (11)

The intuitive concept of free motion seems, however, to imply that velocity vectors change
according to the law of parallel transport, and such curves are called autoparallels:

d2xi

dτ 2
+ 0kj

i dx
j

dτ

dxk

dτ
= 0 (autoparallels). (12)

The interesting observation stressed by Kleinert is then that in a space with torsion geodesics
and autoparallels do not coincide. It is not obvious which of the two is the most natural
extrapolation from ordinary classical mechanics. For different points of view, see, on the side
of autoparallels, Kleinert [9–11], and on the side of geodesics Hehlet al [12], Audretsch [23],
and the recent papers of Lämmerzahl [24] and Barros e Sá [15].

In any case, from the viewpoint of Hamiltonian dynamics autoparallels have peculiar
features. One of the simplest examples is motion on a two-dimensional surface with constant
diagonal metric and constant torsion. The torsion tensor has then only two independent
non-zero components, namelyS121 andS122, which together specify a direction in the plane,
Eb = (S121, S122). It is here straightforward to integrate equations (12): they describe motion
at constant speed, but where the direction of velocity changes so as to be orthogonal toEb. In
other words, kinetic energy in the ordinary sense is conserved, but momentum and phase space
volume is not. In these respects motion along autoparallels in a space with torsion is similar
to a mechanical system with non-holonomic constraints [16, 17] (for analytic and numerical
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investigations of a clarifying concrete example, see [18–20]), an analogy also used extensively
by Kleinert.

The difference between autoparallels and geodesics carries over to the quantum mechanics
of a non-relativistic scalar particle. The gradient of a scalar is a vector, and the covariant
derivative of this vector involves the connection, so that the contraction of two covariant
derivatives acting on a scalar is

gijDiDjψ = gijDi∂jψ =
(
gij ∂i∂j − gij0ij l∂l

)
ψ. (13)

The usual generalization of the kinetic term in the Schrödinger equation involves, on the other
hand, the Laplace–Beltrami operator

1√
g

(
∂ig

ij√g∂j
)
ψ =

(
gij ∂i∂j − gij

{
l

ij

}
∂l

)
ψ (14)

which is self-adjoint with respect to the standard scalar product〈η|ψ〉 = ∫ √gη∗ψ .
The difference between (13) and (14) is a gradient

Ki
il∂lψ = −2Sl∂lψ Sl = Sli i (15)

which, as remarked by Kleinert, is not in general self-adjoint, at least not with respect to the
same scalar product. Quantum dynamics governed by (13) is therefore not necessarily unitary.
This somewhat disturbing property can be compared with the fact that the phase space volume
in the usual sense is not conserved by classical motion along autoparallels.

The problem of geodesics versus autoparallels can also finally be considered, albeit a little
indirectly, for relativistic spin-12 particles. To define spinors in general relativity one needs
a system of local intertial framesξαX, each defined in the neighbourhood of some spacetime
pointX. The transformation matrix betweenξαX and a chosen, in general non-inertial, local
coordinate system atX is called a vierbein

V αµ =
(
∂ξαX(x)

∂xµ

)
x=X

. (16)

The first index of the vierbein denotes a direction in the local inertial frame, and is hence
lowered and raised with the Minkowski metricη. The second index, in contrast, denotes a
direction in the tangent space atX, in a basis determined by the coordinate systemxµ, and is
therefore raised and lowered with the metric tensorg.

Parallel transport and covariant differentiation of a spinor in the directionα of the local
inertial frame are determined by the vierbeins as

Dαψ = Vαµ(∂µ + 0µ)ψ 0µ = 1
2σ

βγ Vβ
νVγν;µ (17)

where σβγ are the basis elements of infinitesimal Lorentz transformations in the spinor
representation, and the semicolon in the last factor stands for covariant differentiation of the
vierbein according to

Vγν;µ = Vγν,µ −
{
κ

µν

}
Vγκ . (18)

The Dirac equation in a space with curvature is then

ih̄γ αDαψ +mc1ψ = 0. (19)

For a classical discussion of these matters, see [21]. For a thoroughly modern discussion from
the mathematical point of view, see [22].

When we also allow torsion of space we enter into less well chartered territory. One
possible way to proceed is to take as building blocks the vierbeins directly, allowing forV αµ,ν
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not necessarily being equal toV αν,µ. The minimal formal change in the Dirac equation is
then to perform the covariant differentiation in (18) using the full affine connection instead
of the Cristoffel symbol. However, we also now have torsion as an independent tensor. By
contractions we can form a vectorSl = Slmm and an axial vector̃Sl = εlmnoSmno. The simplest
relativistically covariant additional terms in (19) are hence(

iCh̄Sαγ
α +Dh̄S̃αγ5γ

α
)
ψ (20)

whereC andD are dimensionless numerical constants. In fact, performing the covariant
differentiation in (18) with the affine connection will not bring in any more terms except those
in (20). The Dirac equation coupled to torsion by the simplest vector and axial vector couplings
and covariant differentiation is thus

ih̄γ αDαψ +
(
(C − 1)ih̄Sαγ

α +
(
D + 1

6

)
h̄S̃αγ5γ

α
)
ψ +mc1ψ = 0 (21)

where the covariant derivativeDα is defined by (17) and (18). If we also put the constraint
that (21) should be derivable by variation from a real action, we are led to the specific choice
C = 1,D = 0, which is often referred to in the literature as the Dirac equation minimally
coupled to torsion [12, 23–25].

I will in the following neglect time components of the spacetime torsion vectorSl . The
only non-vanishing component of the axial vectorS̃l is thenS̃0, which, if we look at it in three
dimensions, transforms as a pseudo-scalar. The axial vector coupling in (21) then has the
following non-relativistic limit [24]:

i
(
D + 1

6

) h̄2

m
S̃0
(Eσ · E∂)ψ (22)

whereEσ is the vector of Pauli matrices and the derivative acts on the wavefunction to the right.
The vector coupling in (21) is, on the other hand, completely analogous to the coupling

to an external electromagnetic field. It will thus, in the non-relativistic limit, give rise to an
effect like the coupling of spin and magnetic field

(C − 1)

2

h̄2

m
( E∇ × ES) · Eσψ (23)

whereES denotes the vector of spatial components of the four-dimensional torsion vector.
In summing up this section we see that the equations for autoparallels (12) and the putatitive

generalization of the Schrödinger operator as the contraction of two covariant derivatives
formed with the affine connection (13) are the odd ones out. Neither arises as the limit of
the Dirac equation minimally coupled to torsion, which only gives a spin–torsion coupling
reminiscent of a Pauli term, the standard Laplace–Beltrami operator and geodesics.

3. Torsion: continuum representation of defects

The description of defects in crystal lattices in the continuum picture with tools from differential
geometry has a distinguished history, described in the 1980 Les Houches lectures of Kröner
[26], which also give a good introduction.

The basic idea is quite simple. A crystal is supposed to carry only isolated defects, such
that around most points locally one has a perfect lattice. The lattice locally around a point,
if continued without defects or deformations indefinitely, may be considered as the tangent
space of the crystal at this point. The local lattice directions provide a basis for this space.
A vector in the tangent space can then be identified with moving a certain number of lattice
units in each direction. Parallel transport of a vector from lattice pointP to lattice pointQ
means that we identify the vector of, say,ni steps in crystal directioni atP with the vector of
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an equal number of steps in the same lattice direction atQ. Since the local lattice directions
may change from point to point in the crystal, a vector can change under parallel transport if
measured in an external frame of reference.

We can then consider the following process. Take two lattice vectorsn1 andn2 in directions
i1 andi2. Transport the pair first alongn1, then alongn2,−n1 and−n2. If the crystal is perfect
the circuit closes and we are back at the point where we started.

If, however, the circuit has circled a dislocation line, we are not back at the point of
departure. Dislocations lines in three-dimensional crystals are characterized by a vectorEt
tangential to the line, and a vectorEb describing the mismatch if we circle the dislocation line
in the positive sense determined byEt .

That is, if we introduce a vector dAj normal to and equal in length to the area spanned by
n1 andn2, then the mismatch when going around the circuit is linearly related to dA by

dbi = αji dAj (24)

whereα is the density of dislocation lines withEt in thej direction andEb in thei direction [26].
The procedure described here is, of course, identical to that used to define the torsion

tensor in section 2 so one may introduce a crystal torsion field as

Skj
i = − 1

2εkjmα
mi (25)

whereε is the totally antisymmetric Levi-Civita tensor and summation of repeated indices is
understood.

In simple three-dimensional crystals with one atom per Bravais cell there are two
qualitative types of dislocations: screw dislocations whereEb is parallel to Et and edge
dislocations whereEb is normal toEt [26–28]. In the first case the dislocation tensorα has
only diagonal elements, while in the second case it has only off-diagonal elements.

The totally antisymmetric trace of the crystal torsion field vanishes for edge dislocations
since

εkjiSkji = −αll . (26)

On the other hand, for screw dislocations the contracted torsion vector vanishes since

Si = Sil l = − 1
2εilmα

ml. (27)

Si can hence be looked upon as a vector dual to the antisymmetric part of the dislocation
density tensor. For edge dislocations it is normal to bothEb andEt , and equal to half ofEb in
length.

4. Geodesics versus autoparallels in crystal space

A crystal space with dislocations but without interstitial defects carries torsion but not curvature
[26]. Geodesics in this space means simply straight lines in the frame of reference of an external
observer. Autoparallels, on the other hand, means motion which is always in the same direction
with respect to the local crystal directions.

The following discussion will be on the level of a semiclassical model. The basic idea
is to take a wavepacket, a superposition of Bloch states, and assume that the crystal changes
on length scales much larger than the spread of the wavepacket. To construct the Bloch states
I can therefore take the crystal lattice close to a given point where the wavepacket is centred
and extend it indefinitely in all direction without deformations or defects. This corresponds to
the tangent lattice in the sense of section 3. If I go far enough from the point the real lattice
and the tangent lattice will differ, but at those distances the amplitude of the wavepacket is
assumed vanishingly small, so this difference will be ignored.
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More quantitatively, the wavepacket is built from Bloch states with wavevectors in a
domain of size1k aroundk. We assume that1k is small compared to the dimensions of the
Brillouin zone, and that 1/1k is small compared to the scaleL on which the lattice changes
orientation appreciably. In real space the wavepacket is then located in a domain of size 1/1k

around a centre, which is denoted byr.
In the absence of external electric and magnetic fields the equations of motion for the

centre of the wavepacket in an undistorted crystal are [27]

ṙ = vn(k) = 1

h̄

∂En(k)
∂k

h̄k̇ = 0 (28)

whereh̄k is the crystal momentum andEn(k) is the energy of the state with wavevectork in
thenth band. Equation (28) describes motion in a straight line. This picture is valid as long
as dispersion effects are not important,

t � tdisp∼ h̄

(∂2En(k))/∂k2(1k)2
. (29)

To see the effects of the changing crystal before dispersion sets in too strongly we must demand
thatL is much less than the distance the wavepacket traverses during timetdisp, that is

1

1k
� L� Ldisp Ldisp= ∂En(k)/∂k

∂2En(k)/∂k2

1

(1k)2
. (30)

As we will see later, for realistic values of1k the bounds in (30) are a little tight, but for the
present discussion it is sufficient that there are, in principle, some scales of time where the
wavepacket is still localized on a length scale much less thanL, but has moved a distance
much larger thanL. In this intermediate regime one can thus pose the problem of whether the
wavepacket would follow geodesics or autoparallels or some other curves in crystal space.

Let the motion of the centre of the wavepacket be parametrized by(x∗(t),k(t)), both from
now on given in a coordinate system fixed in space. The changing orientation of the crystal
can then be described by postulating that the band energyEn(k, x) is a slowly varying function
of x. As the wavepacket moves in the crystal from positionx∗(0) at 0 to positionx∗(t) at t it
acquires a phase of exp(i(S[x∗(t),k(t)])/h̄) where

S[x∗(t),k(t)] =
∫ t

0
[h̄k(t) · ẋ∗(t)− En(k(t), x∗(t))]. (31)

The actual path is determined by the condition thatS should be stationary under variations.
It is obvious that if we introduce the momentump = h̄k and the Hamiltonian function
H(p, x) = En(p/h̄, x) the centre will follow the classical trajectories ofH .

Let us assume for simplicity that the band energy has the structureEn(k) = 1
2h̄

2m−1
ij k

ikj ,
wheremij is the effective mass tensor, which has principal axesn̂(1), . . . , n̂(d) and effective
masses in those directionsm1, . . . , md . The changing orientation of the crystal is effected by
letting the principal axes depend onx. The classical Hamiltonian is then∑
i

1

2mi
(p · n̂(i)(x))2 =

∑
jk

gjk(x)p
jpk gjk(x) =

∑
i

1

2mi
n̂
(i)
j (x) n̂

(i)
k (x). (32)

The wavepacket will hence follow the geodesics with respect to the metricgij induced by the
crystal orientations and the band structure.

In the special case of a spherically symmetric band structure the effective mass tensor
is proportional to the identity. The Hamiltonian is then1

2m
−1
eff p

2, and the dependence of the
crystal orientations drop out. In the last idealized case we would thus predict motion along
straight lines which are geodesics and not autoparallels in crystal space.
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To end the discussion we must also take into account that lattice directions in real crystals
are changed by the presence of dislocations. These are local scatterers, and we have to check
whether the coherence of the wavepacket can be maintained over such distances that the lattice
orientations change appreciably. Suppose that the strength of the perturbation isU and that it
has support over a typical distance of the lattice spacinga. The wavepacket passes over the
defect during a timeTscatterof abouth̄/(1k|(∂En(k))/∂k|), while the natural time scale of the
action of the scattering potential on the wavepacket is ¯h/U . If we assume scattering to any
state on the energy shell with equal probability, we have

Pscatter on shell∼ (a1k)d(ak)d
(
1k

k

)(
UTscatter

h̄

)2

. (33)

Equation (33) is an overestimate, but probably not very much so. A derivation of (33) using
standard first-order perturbation theory is given below in appendix A.

Consider now an array of dislocation lines with surface densityn, and a wavepacket
moving in a plane perpendicular to the lines. As it traverses a distanceL it will, in general,
encounterLn/1k defects, and the total probability of being scattered by any of them is

Pscatter alongL ∼
(
L

1

1k
n

)
(a1k)d

(
U

1k(∂En(k))/∂k

)2

(ak)d
(
1k

k

)
. (34)

We want this probability to be much less than one. A surface dislocation density ofn leads to
a crystal torsion field of strengthna, since each dislocation contributes a Burgers’ vector of
lengtha. The crystal directions can change appreciably over a lengthL if the line integral of
torsion is of order one, that isnaL ∼ 1. The two estimates are compatible if

(a1k)d−1(ak)d
(

U

1k(∂En(k))/∂k

)2(
1k

k

)
� 1. (35)

We are interested in the cased = 2. Assuming for simplicityEn(k) ∼ 1
2meffk

2 we have

(ak)3
(

U

En(k)

)2

� 1 (d = 2). (36)

This bound can evidently only be satisfied, and then only for sufficiently large crystal momenta
k, if the effective scattering potentialU is much less than the largest kinetic energies in the
band. Condition (36) is a serious point. IfU is not sufficiently small then scattering is the
leading effect and considerations pertaining to fine points of the continuum picture, which we
pursue here, are simply irrelevant to electron motion in quantum dots. We remark in contrast
that in the three-dimensional situation (35) becomes

(a1k)(ak)4
(

U

En(k)

)2

� 1 (d = 3) (37)

which can always be satisfied, if1k is small enough.

5. Possible torsion effects in quantum dots

I will now consider the following possible types of effects: (a) classical motion; (b) non-
relativistic quantum motion; (c) spin–torsion coupling terms derivable from the non-relativistic
limit of the Dirac equation minimally coupled to torsion; (d) phenomenological spin–torsion
couplings appropriate for the situation of quantum dots.

When classical or semiclassical descriptions are valid, the electronic motion in the dot is
effectively two dimensional. Let the two directions of the dot be 1 and 2 and the third vertical



Torsion and electron motion in quantum dots 579

direction 3. For points (a) and (b) we only need to consider the possible effects of elements
S121 andS122 of the crystal torsion matrix, i.e. only edge dislocations, while for (c) and (d) we
also need to consider screw dislocations.

It is convenient to express torsion in the lattice unita. Kröner discusses a crystal with one
edge dislocation per every 10× 10 atoms, all Burgers vectors of all dislocations oriented the
same way. In this situation crystal torsion would be 0.01/a, and one would have to move a
distance 100a to see to change the lattice directions change appreciably. It is not clear whether
this example is realistic, the surface defect density being about 1017 m−2. As the standard
set-up I will thus consider one a dislocation per every 100× 100 atoms. Torsion would then
be 10−4/a, and one would have to move a distance of 104a to change the crystal orientations.
Crystals with lower dislocation densities could surely be fabricated, but then we would need
macroscopic quantum dots to see the possible effects of crystal torsion.

With quantum dots of micron size the bounds on dispersion from section 4 can be satisfied.
We would see the lattice orientations change when we move from one side of the dot to the
other, i.e.L ∼ 104a. If we choose the spread of the wavepacket1k to be about 10−3/a.
then 1/1k � L � Ldisp with an order of magnitude at the lower inequality and two orders
of magnitude at the upper inequality. The semiclassical argument predicts that wavepackets
follow classical trajectories in a Hamiltonian given by the band energy as functions of crystal
momentum. This structure stems from solving for the Bloch states in the crystal potential—
information which is not contained in the continuum description of the crystal as a metric space
with curvature and torsion. In the general case neither geodesics nor autoparallels in crystal
space therefore have any particular relevance to the problem. In the special case of a spherically
symmetric band structure we do, however, recover motion along straight lines, i.e. geodesics
in crystal space. Motion along autoparallels would, on the other hand, be on curved paths as
in the example discussed in section 2. If the approximation of a spherically symmetric band
structure is a sufficiently good one, and if the local scattering potentials are weak enough that the
wavepacket does not lose coherence, then the difference between geodesics and autoparallels
could, in principle, be observable.

The scale separation is even more favourable for a description in terms of a non-relativistic
quantum particle. Consider the ground state or a low-lying excited state in the example
discussed previously. If the prescription (13) were correct, they would be solutions to the
eigenvalue equation(

− h̄2

2meff
∇2 +

∑
i

U(x − xi) +
h̄2

meff
Sl∂l

)
ψ = Eψ (38)

whereU is the scattering potential from dislocations at pointsxi andSl is the crystal torsion
vector, which in the example under discussion would be about 10−4/a. The derivative∂l acting
on a low-lying state is also about 10−4/a if the lateral size of the dot is in the micron range.
Hence the perturbationSl∂l is of the order of 10−8/a2, which is comparable to the energy gap
between the ground state and the low-lying states of (38). As discussed above in section 2
this perturbation breaks Hermiticity, and hence leads, if large enough, to complex eigenvalues,
i.e. states exponentially decaying or growing in time. On a conceptual level the problem is
primarily the exponentially growing modes. One might imagine that the defects could perhaps
excite certain electronic states in the dot, and that for some transient time the growth rates of
those states could be described by the eigenvalues of (38). This picture does not look very
plausible physically, and could probably be ruled out by experiments, at least on a qualitative
level.

Let us now turn to possible spin–torsion couplings. The most straightforward, but also
certainly the smallest, are the non-relativistic limits of the vector and axial vector couplings
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in the Dirac equation, (23) and (22). In the first case we have the curl of the torsion vector.
Let us assume that the torsion varies in a controlled manner in the plane of the dot. We only
have to consider edge dislocations, since the vectorES vanishes for a screw dislocation. When
the density of edge dislocations varies normally to the vectorES we would have an effective
coupling analogous to the Zeeman effect, with an effective magnetic field pointing in the
vertical direction (out of the plane of the dot). In the axial vector case we only have to consider
screw dislocations,̃S0 being the sum of densities of screw dislocations in all directions.

We can also discuss more phenomenological spin–torsion coupling terms. In the physical
situation of a quantum dot the vertical direction is determined by the gradient of dopant
concentration. We can therefore form a combination of torsion and the vertical direction
vector which transforms as an axial vector, namelyŜl = εijkn̂i3Sjkl . This is just the vectorEb
which results from circling a dislocation in the 12-plane, i.e.Ŝ could have elements both in and
out of the plane. We then consider a term likeκŜ · Eσ . Torsion has the physical dimension of
inverse length, henceκ should have dimension mass·(length)3 (time)−2. The only combination
of Planck’s constant ¯h, the lattice constanta and the effective electron massmeff, which has
this dimension is ¯h2/ameff. This coupling can be compared dimensionally with (23) and (22),
which have the bare electron mass instead ofmeff and a spatial derivative instead of 1/a.

The energy splitting of two states with spin, respectively parallel and antiparallel toŜ,
will then beκ times the average value ofŜ in lattice units. With the standard case of one
dislocation per 100× 100 atoms this gives

1Etorsion≈ κ

104a
. (39)

The frequency of the transition is hence

νtorsion∼ 10−4 h̄

meffa2
≈ 100 Hz (40)

where, for simplicity, I have estimatedmeff with the electron rest mass anda to be 1 Å. The
two terms derivable from the Dirac equation discussed above are even smaller, approximately
by a factor ofa/L.

6. Conclusions

In this paper I have taken up a suggestion of Kleinert that the motion of a classical quantum
particle in a space with torsion could be relevant to describe some properties of a crystal with
defects. I have focused on the example of electron motion in quantum dots, since these systems
most nearly realize the textbook example of electron motion in potential wells.

In a space with torsion there are two different privileged classical motions, geodesics
and autoparallels. A semiclassical analysis carried out in section 4 indicates that at some
scales of space and time geodesic motion could be observed, if the band energy structure is
spherically symmetric, and the local scattering potential from dislocations sufficiently weak.
The last condition is very stringent in two-dimensional geometries such as quantum dots, and
local scattering is in fact likely to be the dominant effect. A continuum description of the
motion of an electron in a crystal with dislocations is therefore probably not very useful in
two dimensions. Assuming nevertheless, for the sake of the argument, that the local scattering
potential is weak, the conditions for the distinction between geodesics and autoparallels could
probably be realized experimentally. These issues are discussed in section 5. If the band
energy structure is not spherically symmetric the problem is more complicated and neither
geodesics nor autoparallels would follow from the semiclassical argument.
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The distinction between geodesics and autoparallels carry over to the quantum mechanics
of a non-relativistic particle, i.e. to the proper generalization of the Schrödinger equation to a
space with torsion. The analogy with geodesics would be the Laplace–Beltrami operator, while
the analogy with autoparallels would be another differential operator introduced by Kleinert.
The difference between the two operators can be relatively large, and hence observable. Since
it breaks Hermiticity, it leads to modes exponentially growing or decaying in time, an effect
which should be falsifiable by experiments.

The spin–torsion coupling terms, both those derivable from the Dirac equation and more
phenomenological ones, are all very small and give transitions with frequencies of 1 kHz, or
below.

Hence we conclude that whatever the motion of a classical or quantum particle in a
space with torsion should be, the issue has little bearing on electron motion in quantum dots.
The semiclassical motion of wavepackets can, in favourable cases, be arranged to be along
geodesics, i.e. along straight lines, but autoparallels are never relevant. Bound electronic
states in a quantum dot may to some degree of accuracy be described as the eigenstates of the
Laplacian with Dirichlet boundary conditions, but the alternative introduced by Kleinert has
eigenstates that are exponentially growing or decaying in time, and this contradicts the very
notion of stationary bound states in the dot. The spin-coupling terms are not in contradiction
with theoretical arguments, nor with conceivable experiments. But their effects are so weak
that it would be very difficult to observe them.
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Appendix. Computation of the wavepacket-defect cross section

The wavepacket interacts with the defect during a time of about

Tscatter= h̄

1k|(∂En(k))/∂k| . (A1)

It is therefore convenient to regard the defect as a time-dependent perturbation, switched
on before−Tscatter and switched off afterTscatter. For definitiveness takeV (x, t) =
V (x) exp(−1/(2σ 2)(t/Tscatter)

2) with σ some number which will eventually be taken to
infinity.

Let us take a lattice of large finite size3with the isolated defect centred at the origin. The
values of the wavevectork then come in integer multiples of 2π/3. The time-dependent Bloch
states are denoted by9(0)

n,k(x), and are normalized by
∫
3d
|9(0)

n,k(x)|2 = 1. The wavepacket

formed by Bloch waves from thenth band is given by
∑

k 9
(0)
n,ka

(0)
k , where the amplitudes are

normalized by
∑

k |a(0)k |2 = 1.
When the wavepacket has passed over the defect, i.e. after the perturbation has been

switched off, we have to first order in the perturbation the out state

9(out) =
∑
k

9
(0)
n,k

(
a
(0)
k +

∑
l

Ukla
(0)
l

)
Ukl = − i

h̄

∫ ∞
−∞

Vkl(t) ei(Ek−El)/h̄t (A2)

whereVkl(t) is the time-dependent matrix element between the time-independent Bloch states
k andl. The time dependence of the Bloch states have been written out explicitly in the matrix
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element in (A2). The difference between9(out) and the unperturbed wavepacket at the same
time is δ9(out) = ∑

kl 9
(0)
n,kUkla

(0)
l . It is orthogonal to the unperturbed state. The absolute

square ofδ9 hence represents the probability to be in an out state orthogonal to the unperturbed
wavepacket.

I disregard scattering out of the band. Then, for pairs of states such that|Ek − El| �
h̄/(Tscatter) the transition probability amplitudeUkl will be very small. Inserting the definition
of Tscatter this means that only wavevectors in a thin shell of thickness about1k around the
surface given byEk = Ek are scattered. The matrix element is

Vkl(t) = 〈k|V |l〉 exp
(− 1

2σ
2(t/Tscatter)

2
)

(A3)

where〈k|V |l〉 = ∫ (9(0)
n,k)
∗(x) V (x)9(0)

n,l (x) dx. If both wavevectors are within1k of k then,
because 1/1k is assumed much larger thana,

〈k|V |l〉 =
(
a

3

)d
U |k − l| ∼ 1k (A4)

whereU is some measure of the strength of the potential. In general, if|l〉 is in the wavepacket
we can always for the same reason substitute〈k|V |l〉 with 〈k|V |k〉. We now have

Ukl = − i

h̄
〈k|V (x)|l〉 exp

(
−1

2

(
σTscatter

(
Ek − El
h̄

))2)√
2πσ 2T 2

scatter. (A5)

The total probability of scattering is

|δ9|2 =
∑
nkl

U ∗nkUnl(a
(0)
k )
∗a(0)l . (A6)

Let the amplitudes be given asa(0)k = [(2π)d/2/3d/2]f0(k), where the smooth functionf0(k)

is normalized by
∫
3d
|f0(k)|2 = 1. For definitiveness takef0(k) to be a Gaussian centred atk

with width1k:

f0(k) = exp

(
−1

2

(
k − k
1k

)2)(
π(1k)2

)−d/4
. (A7)

We now wish to compute
∑

l Unla
(0)
l wheren is anywhere on the shell of scattered

wavevectors. We have to separate components of wavevectorl parallel and orthogonal to
∂En(k)
∂k

. By expanding

En − El = (En − Ek)− ∂En(k)
∂k

(l‖ − k‖) (A8)

and using the definition ofTscatterfrom (A1) we have∑
l

Unla
(0)
l = −

i

h̄
〈n|V (x)|k〉

√
2πσ 2T 2

scatter

(
3

2π

)d/2(
π(1k)2

)−d/4(
2π(1k)2)

)d/2
×
√

1

σ 2 + 1
exp

(
−1

2

σ 2

σ 2 + 1

(
Tscatter(En − Ek)

h̄

)2)
. (A9)

The contribution to (A6) from a given wavevectorn can therefore be written as∣∣∣∣∑
l

Unla
(0)
l

∣∣∣∣2 = ( |〈n|V |k〉|Tscatter

h̄

)2
σ 2

σ 2 + 1
(1k)d(2π)d/2+12d/2

×
(
3

2π

)d
exp

(
−1

2

2σ 2

σ 2 + 1

(
Tscatter(En − Ek)

h̄

)2)
. (A10)
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When we sum overn we can take out a valuen such thatEn = Ek, and then

integrate parallel to∂E/∂n. That will give a term
√
(2π(σ 2 + 1)h̄2)/(2σ 2T 2

scatter(∂E/∂n)
2).

Incorporating the partial derivative in a delta function we can hence write

|δ9|2 =
√

σ 2

σ 2 + 1
(1k)d+1(2π)d/2+22d/2−1

(
Tscatter

h̄

)2∣∣∣∣∂E∂k
∣∣∣∣

×
(
3

2π

)2d ∫
δ(En − Ek)|〈n|V |k〉|2 dn. (A11)

Here we can take the limit ofσ going to infinity and we have thus removed the spurious time
dependence of the perturbation.

By an order-of-magnitude estimate we take|〈n|V |k〉| = U(a/3)d for all statesn on the
energy shell given byEn = Ek. We can then take the matrix element outside the integral∫
δ(En − Ek) dn, which is the density of states at energyEk. If we further assume that

En = 1
2meffn

2, then the density of states is equal to(�dkd)/2Ek, where�d is the area
of the unit sphere ind dimensions. We can finally take out from (A11) the combination
1k|∂E/∂k|1/(2Ek) which can be rewritten more simply as1k/k, and this gives (33).

If we would instead have assumed that the matrix element is only non-zero between states in
the wavepacket, we would then have estimated the integral in (A11) by

∫
|n−k|61k δ(En−Ek) dn

which is about(1k)d−1/|∂E/∂k|. The probability of being scattered from one wavepacket to
another is hence

Pscatter within1k ∼ (a1k)2d
(
UTscatter

h̄

)2

(A12)

which can also be derived by straightforward dimensional analysis, since the probability density
of the wavepacket is about(1k)2d .
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[15] Barros e Śa N 1997 Autoparallels from a variational principleStockholm University Preprint
[16] Arnold V I, Kozlov V V and Neishtadt A I 1988Dynamical Systems III(Berlin: Springer)
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